منابع مشابه
Disruptive camouflage impairs object recognition.
Whether hiding from predators, or avoiding battlefield casualties, camouflage is widely employed to prevent detection. Disruptive coloration is a seemingly well-known camouflage mechanism proposed to function by breaking up an object's salient features (for example their characteristic outline), rendering objects more difficult to recognize. However, while a wide range of animals are thought to...
متن کاملInteractive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish
Disruptive body coloration is a primary camouflage tactic of cuttlefish. Because rapid changeable coloration of cephalopods is guided visually, we can present different visual backgrounds (e.g., computer-generated, two-dimensional prints) and video record the animal's response by describing and grading its body pattern. We showed previously that strength of cuttlefish disruptive patterning depe...
متن کاملOutline and surface disruption in animal camouflage.
Camouflage is an important strategy in animals to prevent predation. This includes disruptive coloration, where high-contrast markings placed at an animal's edge break up the true body shape. Successful disruption may also involve non-marginal markings found away from the body outline that create 'false edges' more salient than the true body form ('surface disruption'). However, previous work h...
متن کاملCuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns
Cuttlefish are cephalopod molluscs that achieve dynamic camouflage by rapidly extracting visual information from the background and neurally implementing an appropriate skin (or body) pattern. We investigated how cuttlefish body patterning responses are influenced by contrast and spatial scale by varying the contrast and the size of checkerboard backgrounds. We found that: (1) at high contrast ...
متن کاملCuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration.
We investigated some visual background features that influence young cuttlefish, Sepia pharaonis, to change their skin patterning from 'general resemblance' of the substratum to disruptive coloration that breaks up their body form. Using computer-generated black/white checkerboard patterns as substrata, we first found that the size of the white squares had to be within a certain narrow range (r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society B: Biological Sciences
سال: 2006
ISSN: 0962-8452,1471-2954
DOI: 10.1098/rspb.2006.3614